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There is examined the plane homogeneous problem of elasticity theory on the
equilibrium of an infinite wedge in whose bisector plane there is an inner rect-
ilinear semi-infinite crack. The wedge faces and the crack edges are load-
free. The stresses tend to zero at infinity but their principal vector and princi-
pal moment differ from zero and are given by a condition. The problem is
reduced to solving a Wiener — Hopf functional equation by using a Mellin trans-
formation. An exact solution of the equation is given and the stress intensity
coefficient at the crack vertex is calculated.

1, Formulation of the problem, Letusconsider the equilibrium
of an infinite elastic wedge with aperture angle 22 (0 <<a < x), in whose bisector
plane there is an infinite crack for ¥ = 0, £ > | (Fig.1). The wedge faces and
crack edges are load-free, The stresses tend to zero at infinity, but their principal
vector and principal moment differ from zero and equal (0, Y) and M, respectiv—-
ely,
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The ligament y = 0, 0 << 2 << between the lower —a << 6 < (Qand upp-
er 0 < 0 < o wedge therefore transmits the given force (0, ) and the given mom-

ent M.
The boundary conditions of the problem have the form

0=a, 6p="Te=20 (LY
9=O, ‘l.',o=0

Ry
0=0, r<i, E-T“O (1.2

06=0, r>1 c4=0
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{0a, Tre; O are the stresses, and ug, U, the displacements),

N ote. The normal displacement g, and not just its second derivative with
respect to the radius is zero, as is written in the first condition of (1. 2), as follows
from the continuity of the displacements at the ligament and from the symmetry of
the problem, However, the stresses in a problem with the condition 8= 0, r < I,
ug=0 will be the same as the stresses in a problem with the condition 8= 0,r <1,

%uy / 6r* = ¢ (when all the remaining conditions are retained),

By assumption, the relationships

! 1
$ootr,0yar =Y, (oo(r,O)yrdr =M (1.3)
0 0
are valid,
Information will later be required about the roots of the equation
A = sin 2pa + p sin 2a = 0 (1.9

(p is a2 complex number) in the stip 0 << Re p << 1.

1t is known that (1,4) has no roots in the mentioned strip for 0 << o << = / 2 [1].

Lemma, Forany a(n/2<a<n), theequation A (p) =0 has a
unique root in the domain 0 < Re p<C 1, Im p > 0 . This root is real and be-
iongs to the interval (%/,, 1).

We shall not present the proof of the lemma which is based on passing from (1. 4)
to an appropriate real system and using the apparatus of differential calculus,

The problem under consideration is a homogeneous, singular problem of elasticity
theory whose singularities are the crack vertex, the wedge apex, and the infinitely re-
mote point, The boundary value problem at the singularities is not defined, Addition-
al conditions at the singularities should be formulated in the formulation of the correct
singular boundary value problem, The following assertion is used to formulate these
conditions [2]: The solution of the correct boundary value problem of elasticity theory
behaves in an infinitesimal neighborhood of a singularity as the eigenfunction asymp-
totically greatest in absolute value, which corresponds to the canonical singular prob-
lem.

The passage from the initial problem to the corresponding canonical singular prob-
lems, which is realized by using the " microscope principle”, and the investigation
of these latter (see [2] ) show that the condition

0 ‘;O, T—->1~0, (}'e~K1 [2n (l-—r)}-‘h (1.5
8%
8=+0, r—1+0, —2~—(1—v)EIK(@n)"(—1""

can be formulated at the crack apex (E is Young's modulus, v is the Poisson's ratio,
K7 is the stress intensity coefficient at the crack apex) and the following condition

86=0 r—=0 (1.6)
ogg—~>0 O<a<n/2)
Gg~A/r* (n/2<a<n)

at the wedge vertex (A = A (x) is the unique root of (1,4) in the strip 0 <C Rep <<
1, and A is a real constant),
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We apply the microscope principle to the initial problem to formulate the condit-
ions at infinity, Let r//-—>oo. This can be realized for r — 00,. [ = const

and for 7 = const, /— (. The pasage to the limit r = const, /- 0 corres-

ponds to the singular limit problem (see Fig. 2). Two wedges with stress-free faces,

whose vertices are combined at the zero point, are shown in the figure, The force

(0, Y) and the moment M act at the apex of the upper wedge, and the force (0; —
Y) and the moment — J}f at the apex of the lower wedge. The solution of this

problem is the asymptote at infinity for the solution of the initial problem., In particul-

ar, the relation

8= 40, resoo .
a’“a~~1~vﬂ(2a+sin2a Y + 4cosa _ﬁf_)
Fzl ~E —enia 8 | acosa—sing

holds.

Therefore, the nontrivial solution of the homogeneous problem (1. 1) and (1, 2)und-
er the additional conditions (1, 5) — (1.7) at the singularities are to be found,

Without limiting the generality, the spacing between the wedge vertex and the
crack apex can be considered unity,

Undeservedly little attention has been spent on the investigation of nontrivial sol-
utions of homogeneous problems of elasticity theory. This is explained by the wide~
spread conviction that only the trivial solution of such problems exists according to the
uniqueness theorem, This latter is true for problems of the class S (the Saint- Venant
principle is valid in this class of problems). A nontrivial solution of homogeneous prob-
lems [2] exists in problems of the class N (the Saint-Venant principle does not hold
in this class of problems), Namely, as a mle these problems are of greatest pracitcal
value, When problems of the class N must be solved, researchers ordinarily limit
themselves to the construction of a unique solution of the inhomogeneous problem and
neglect the form of the homogeneous solutions .

As an illustration, let us examine the known investigation of Khrapkov [3].

The problem for a wedge with a nonsymmetric rectilinear crack emerging from
the wedge angle is considered by Khrapkov. The wedge angle is ¢ (Fig.3). It is
asumed that the wedge faces are free, while arbitrary loads <are applied to the crack
edges. It is assumed that the stresses tend to zero as an additional condition at infinity.
This latter condition is sufficient for the existence of a unique solution justin problems.



Elastic equilibrium of a wedge with a crack 167

ofclass S, i.e,, for @ <=a (see [2]). In problems of the class N (i.e,, for
¢ >n) the correct formulation of the problem should include giving definite coeffic-
ients whose dimensionality depends on the magnitude of the angle ¢. The solution
of the problem is not unique for ¢ > = in the Khrapkov formulation since there exists
a nontrivial solution of the homogeneous problem (determined to the accuracy of two
arbitrary constants), As the external loads tend to zero, the Khrapkov solution tends
to zero, which corresponds to the trivial solution of the homogeneous problem,

An elastic wedgelike plate 0 <r < =, 0 < 8 < a of thickness % to which an
elastic absolutely flexible variable-section rod is fastened at the section 0 < r < {,
6 = 0, is considered in the paper of Nuller [4], A force T is applied to the rod end-
face, Tangential forces f(r) act on the free part of the rod side surface at 0 <
r<g 1.

If f(N=0,T=0 and o > n then the B, M, Nuller solution is trivial while
a nontrivial solution of the homogeneous problem mentioned exists in this case, This
solution is determined to the accuracy of two arbitrary constants,

This last remark also refers to the Nuller paper [5], The wedge —a <0 <a,

0 < r < oois considered, where one part of the boundary (8 = +a, 0 < r< 1) is
under sliding support conditions, while the other is stress free. A load equivalent to
the presciibed force acts through a rigid holder (wedgelike stamp) on the wedge.

For a >a/2and P=0(P isa given arbitrary force), a nontrivial solution of
the problem exists, In this case the Nuller solution is trivial,

The homogeneous problem considered in this paper belongs to the class S ., Its
nontrivial solution is constructed below.

2. Wiener—Hopf functional equation and its sol-
ution, Applying the Mellin transform

m* (p) = Sm(r)rl’dr

to the equilibrium equations and the strain compatibility condition, we obtain [1]
o¢* (p, 8) = A;sin(p + 1) 6 -+ A, sin(p — 1) 6 + (2.D
Azcos (p+ 1)0+ A cos(p — 1) 6

Sa% d

* -y 4%’ * -1 Z5g* *
Tr9=(p—'1)1 49 po, =(p'_'1) ) — Oy

(A; (p) are unknown functions of p (i = 1, 2, 3, 4)). By using the boundary
conditions (1, 1) we arrive at the system
A;sin(p+1Da+ A,sin(p —1)a+ Azcos (p+ 1) a + (2.2)
Ascos(p—1)a=0
A,(p+1Decos(p+1at+A4,(p—1Vcos(p—1)a —
As(p+1)sin(p+1)a—A,(p—1)sin(p -1 a=_0
Aip+ 1)+ 4. (@—1)=0
whose solution we write as
Ay=— @+ (p—174,, A;=—-2(psinta -+ (2.3
sin? pa) A4,
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A, = =2(p+ 1) (p — 1) (p sin® & — sin? pa) A™4,
According 0 (2.1) and (2, 3)
0e* (p, 0) = —4 (p — 1) (p? sin® @ — sin? pa) A4, (2.9
By using Hooke's law, and taking account of (2. 1) and (2, 3), we find

4(l —

oD o+ 1) (p— 1)t 4 (2.9

s Puy
S re¥igr =

o
G=x-t-0

¢

Eliminating A, in the relationships (2.4) and (2. 5), we arrive at the fundamental
Wiener — Hopf equation

@~ (p) = —2 (p + 1)7! (p? sin®x — sin?® pa) A™ID* (p) (2.6)
1 o
- ; E Fu
@) ={orr. Omar, 0 @)= g (|
[} 1 -

which we rewrite as

O~ (p) = (p + 1) tg pnG (p) D (p) (2.7
G (p) = —2 ctg pn (p? sin® @ — sin® pa) A™
We set A, 2L o
°= {1, 0<a<n2

According to (1, 6) and (1.7), the function ®* (p) is analytic in the half-plane
Re p << 0, and the function @~ (p) in the haif-plane Re p > — A,

Let us examine the contour L consisting of the imaginary axis with the exception
of a small symmetric section around the origin, and a left semicircle of small radius
with center at the origin (Fig.4), in the plane of the complex variable p.  The
direction of traversing the contour agrees with the direction of the imaginary axis, The
domains on the left and right of the contour will be denoted by D* and D~

The function G (p) has neither zeros nor poles on the contour L and tends to
unity along itas p — oo, Therefore, the representation

G(P)*%i—%— (p<L) (2.8)
1 ¢ InG() _ [G*(p), p=D"
= [z ) o] - {6~ e

is valid,
By using the representation [6]

et - I - + - I'{1FEp)
gpn = p K" (p) K™ (p), K*(p) Thrr
where the functions K* (p) and K~ (p) are analytic, have no zeroes and satisfy .
the conditions
K*(p)~V—p (p—> =), Rep<, (2.9
K- (p)~Vp (p—> =), Rep>—1,
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we obtain by taking care of (2,7) and (2, 8)

@+ 1) O (@)K (p)G (p) = p [K* (P)IG* (p)@* (p) (pE=L) (210
The function in the left side of (2. 10) is analytic in the domain D~ and the function
in the right side is analytic in the domain D+, On the basis of the principle of con-
tinuous extension they equal the very same function which in analytic in the whole
plane p.

Let us find this single analytic function, Starting from the relationships (1, 5), we
find (p — )
@~ (p) ~(2p)~"*K1, @*(p)~(— p/2)!K} (2.11)

On the basis of (2, 8), (2, 9) and (2, 11) it follows from (2, 10) that the single analytic
function is ¢y + ¢;p (cy, ¢, are constants to be determined).
Taking the conditions resulting from (1, 8) into account

OO0 =Y, O{U)=M
by using (2, 10) we obtain a system to determine ¢o and ¢;

YK~ (0)G~ (0) = co, 2MK- (1) G~ (1) = ¢, + ¢,

Hence
2a in2a¢ s '
Co=Y[—2F-+i—s§l;nH'2—a)—] , CI=4MJ1:"/’G—(1)—C0
The solution of the functional equation is written as
- _ Co + &P + — K+ (p)eo + erp) (2.12)
0 = rnrwmee: YO ="wm

3, Analysis of the solution, Letusevaluate the stress intensity
coefficient at the crack apex. We find
(1) (p) ~cyp—is (3.1
from the first formula in (2.12) as p —> oo
Comparing the asymptotics of the function @~ (p) in (2.11) and (3. 1) and going
over to dimensional variables, we obtain
_ 2\Y: . 2a 4 sin 2a
Ki=4(5)" 6 )y Mi—n — (5

)‘/x Yi-ts

Let us study the behavior of the stress 0o for 6 = 0, r — (.
Using the second formula of (2. 12), (2, 6), the lemma, the Mellin inversion form-
ula, and the theorem of residues, we arrive at the relationships

G (r,0) >0 O<a<<nal2)

2 (sin? Aa — A%sin2qa) I (f-41) ¢o — A&y e
os (r, 0) ~ 2a cos 2ho. +sin2a T (Ya+A) Gt (—-07») AN —1) e
/2 e m)

As a result of investigating the behavior of the stressesfor 0 << 8 << ¢ andr — oo
we obtain

(1 — cos 2a) cos @ — (2a + sin 2a) sin® Y
sin? o — o2 -+

o, (r,0) ~
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2sin{fu—20) M
sina—acose 12

2sin O si -8 M 1
T, )~ e e S 0a(r0) = o (1)

As should have been expected, these formulas agree with the known solution of the
corresponding canonical singular problem,

The limit cases @ = 1t/ 2 and @ = 5 of the problem considered were studied
earlier by other authors, [7 — 9],

The author is grateful to G. P, Cherepanov for attention to the research and for
useful discussion of the results,
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